Nutri-Facts

Agronomic information on nutrients for crops

It's for Real —
Potassium Is Required by Plants

Potassium (K) is a mineral nutrient essential to both plants and animals. For example, it is the third most abundant mineral in our bodies, surpassed only by calcium (Ca) and phosphorus (P). More than 85 percent of K in the human body is found in major organs such as muscles, skin, blood and the digestive tract. Neither animals nor plants can survive without adequate supplies of K, its effects are real.

Potassium in Crops

Plants require more K than any other nutrient except nitrogen (N). Agronomic crops contain about the same amounts of N and K, but K content of many high-yielding crops is even higher than that of N. Unlike other nutrients, K does not form compounds in plants, but remains free to "regulate" many essential processes...including enzyme activation, photosynthesis, water use efficiency, starch formation and protein synthesis. Table 1 shows K uptake by some of the common crops grown in North America.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Yield</th>
<th>K2O taken up in total crop, lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>8</td>
<td>480</td>
</tr>
<tr>
<td>Coastal bermudagrass</td>
<td>8</td>
<td>400</td>
</tr>
<tr>
<td>Corn</td>
<td>160</td>
<td>213</td>
</tr>
<tr>
<td>Cotton</td>
<td>1,000</td>
<td>85</td>
</tr>
<tr>
<td>Grain sorghum</td>
<td>8,000</td>
<td>740</td>
</tr>
<tr>
<td>Oranges</td>
<td>640</td>
<td>390</td>
</tr>
<tr>
<td>Peanuts</td>
<td>4,000</td>
<td>185</td>
</tr>
<tr>
<td>Rice</td>
<td>7,000</td>
<td>168</td>
</tr>
<tr>
<td>Soybeans</td>
<td>60</td>
<td>205</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>40</td>
<td>460</td>
</tr>
<tr>
<td>Wheat</td>
<td>60</td>
<td>122</td>
</tr>
</tbody>
</table>

Note: To convert K2O to K, multiply by 0.63.

Potassium in Soils

Most soils contain thousands of pounds of K...often 20,000 pounds or more per acre. However, only a small amount is available to plants over the growing season, probably less than two percent. Soil K exists in three forms.

- **Unavailable K** is found in soil minerals. It is released too slowly to be available to a growing crop in a particular year.
- **Slowly available K** is 'fixed' or trapped between layers of certain soil clays. Highly weathered soils (temperate areas) don't contain much of such clays.
- **Available K** is found in soil water plus that held in exchangeable form by organic matter and clays.

Potassium moves by diffusion in the soil, a slow process. Crop roots usually contact less than 3 percent of the soil in which they grow. This means soils must be well supplied with K to ensure availability and adequate supplies at every stage of growth, right up to harvest. Figure 1 illustrates the way K 'diffuses' to plant roots.
Fertilizing Soils with Potassium

There is no best way to apply K fertilizers. Methods depend on several soil and crop conditions and other management practices—crop grown, tillage system, soil fertility, available labor and equipment, soil type, use of crop protection chemicals in combination with fertilizers and others.

Different methods of applying K fertilizers are variations of the two extremes, banding (row placement) and broadcasting, usually with incorporation into the tillage layer.

Combining row with broadcast is often the best way to apply K. That combination gives a fast, early start and provides a season long reservoir. The important point is to provide adequate K nutrition that will last from planting to harvest.

There are several K fertilizer sources. Each has its advantages. The most commonly used is potassium chloride (KCI), or muriate of potash. However, special crop needs often warrant the use of the other sources, including potassium sulfate (K2SO4), potassium magnesium sulfate (K2SO4·2MgSO4), potassium nitrate (KNO3) and potassium thiosulfate (K2S2O3). The source chosen should be based on soil crop needs, method(s) of application, price and availability.

Potassium Deficiency Symptoms

One of the most common K deficiency symptoms is scorching or firing along leaf margins, usually appearing on older leaves first. Potassium deficient plants grow slowly and develop poor root systems. Stalks are weak and lodging is common. Seed and fruit are small and shriveled; crops show lower resistance to disease and moisture stress.

Crop Response to Potassium

Potassium fertilization on responsive soils increases yields and is one of the vital income-earning inputs available to the farmer. Data in Table 2 illustrate the importance of K in increasing crop yields. Corn results are from Ohio; soybeans from New Jersey.

Table 2. Potassium increases corn and soybean yields.

<table>
<thead>
<tr>
<th>K2O rate, lb/A</th>
<th>Yield, bu/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corn</td>
</tr>
<tr>
<td>0</td>
<td>123</td>
</tr>
<tr>
<td>100</td>
<td>179</td>
</tr>
<tr>
<td>200</td>
<td>187</td>
</tr>
</tbody>
</table>

Potassium plays a vital part in essential processes of plant production. It's for real.

For further information contact:

Potash & Phosphate Institute
Suite 110
655 Engineering Drive
Nacogdoches, Texas, U.S.A.
369-2837
Phone: (770) 447-0356
Fax: (770) 448-0380

Potash & Phosphate Institute of Canada
Saskatoon, Saskatchewan
S7K 1J8, Canada
Phone: (306) 612-2635
Fax: (306) 612-9911

Foundations for Agricultural Research
Suite 100
655 Engineering Drive
Nacogdoches, Texas, U.S.A.
369-2837
Phone: (770) 447-0355
Fax: (770) 447-0356